N-Tier DB Access

Lee Lueking

CMS Detector DB CD Briefing
Oct. 6, 2003

Motivation for Adding a
Middle-tier (MT)

MT provides DB connection management

Maintenance is simplified by decoupling DB and client interfaces.
Releases, UPS products, etc. for client and MT are usually independent.

Operational support is easier because one monitors a few MT servers,
instead of hundreds of clients.

DB access and load balancing polices can be added easily, as needed, to
the MT.

Excellent monitoring features available.
Configuration flexibility.

View in the DB can be different from view inside jobs without changing
the client.

On-demand population of the MT cache, and automated cache
management, means “start it and forget it” operation.

The caching drastically reduces bandwidth to oracle server and
significantly lowers the latency for data access

Network interruptions are less significant with the MT caching in place.

Design Proposal Overview (CDF)

* Build a middle-tier using:
— Web services for MT-client communication with Client

— Python or Java MT server using DAN (D0) experience for DB connection and
caching

— Create a simple client interface using HTTP.

Connection Management and
Memory cache

W
HTTA Client
Server
/

Use Tomcat or straight Apache server \

Proxy

Server side cache

Getting started

Starting with a simple prototype to test
performance and scaling (see diagram on right)

— Johns Hopkins is helping to do this work
— Consulting from CEPA-APS.

Understanding other projects which may be
useful:

— CMS has a similar framework called
CLARENS used for data analysis which
has ROOT and other modules.

— Spitfire is a database access project in
EDG WP2 that uses web services
http://edg-wp2.web.cern.ch/edg-
wp2/spitfire/

11

8

http://clarens.sf.net/

	N-Tier DB Access
	Motivation for Adding a Middle-tier (MT)
	Design Proposal Overview (CDF)
	Getting started

